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A number of two-dimensional time-periodic flows, for example the Kármán street
wake of a symmetrical bluff body such as a circular cylinder, possess a spatio-temporal
symmetry: a combination of evolution by half a period in time and a spatial reflection
leaves the flow invariant. Floquet analyses for the stability of these flows to three-
dimensional perturbations have in the past been based on the Poincaré map, without
attempting to exploit the spatio-temporal symmetry. Here, Floquet analysis based on
the half-period-flip map provides a comprehensive interpretation of the symmetry-
breaking bifurcations.

1. Introduction
When a system is invariant under the action of a group of symmetries, there can

be far-reaching consequences on its bifurcations. When the symmetries are purely
spatial in nature (e.g. reflections, translations, rotations), these consequences have
been extensively studied (see, for example, Golubitsky & Schaeffer 1985; Golubitsky,
Stewart & Schaeffer 1988; Crawford & Knobloch 1991; Cross & Hohenberg 1993;
Chossat & Iooss 1994; Iooss & Adelmeyer 1998; Chossat & Lauterbach 2000;
Golubitsky & Stewart 2002). The system may also be invariant to the action of
spatio-temporal symmetries. These are spatial symmetries composed with temporal
evolution. A classic example is the two-dimensional Kármán vortex street form of the
wake of a circular cylinder. When snapshots of dye or hydrogen bubble visualization
of the wake are taken half a shedding period apart, these manifest an invariance
corresponding to a reflection about the wake centreline (the action of the spatial
reflection symmetry) together with a half-period temporal evolution. Figure 1 shows
computed locations of marker particles in the two-dimensional cylinder wake half
a period apart, illustrating this spatio-temporal symmetry. This symmetry is an
involution, i.e. applying it twice is the same as applying the identity operator, and so
it is a spatio-temporal Z2 symmetry.

The transition from two-dimensional to three-dimensional flow is of fundamental
interest in fluid dynamics. Two-dimensional flows, like the Kármán vortex street and
other bluff-body wakes, are invariant in the spanwise direction to both translations
(SO(2) symmetry group) and to reflections (Z2 symmetry group), the combination
generating the O(2) symmetry group. The complete symmetry group of these flows
is Z2 × O(2). The implications of O(2) symmetry in fluid systems have been studied
extensively, both when the instability breaking O(2) symmetry (i.e. transition from
two-dimensional to three-dimensional) is due to a single real eigenvalue becoming
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Figure 1. Computed locations of marker particles, illustrating the spatio-temporal symmetry
of a two-dimensional circular cylinder wake for Re =188.5 at times t0 and t0 + T/2 (t0 is
arbitrary, T is the Strouhal period).

positive (steady bifurcation) as well as when it is due to a pair of complex-conjugate
eigenvalues gaining positive real part, leading to time-periodic flow (e.g. see the
references cited above).

The types of symmetry-breaking bifurcations to three-dimensional flow that a two-
dimensional flow can experience are completely determined by the symmetry group of
the system, and not by the particulars of the physical mechanism responsible for the
bifurcation. For example, spatial reflection symmetries (with a Z2 symmetry group)
are broken by pitchfork bifurcations in many flows (e.g. Benjamin 1978a , b; Rucklidge
1997; Blohm & Kuhlmann 2002), but may arise through different mechanisms, e.g.
centrifugal, buoyancy or shear instability, in different situations. The point is that the
symmetries of the system govern the types of possible bifurcation that may occur, as
well as the symmetry properties of the bifurcating solutions themselves, an idea that
is formalized in the equivariant branching lemma (see, for example Golubitsky et al.
1988; Chossat & Lauterbach 2000).

The instabilities of two-dimensional time-periodic flows (e.g. the wake flows with
spatio-temporal Z2 × O(2) symmetry) are governed by the Floquet multipliers whose
moduli become greater than unity (Joseph 1976). In numerous wake flows, two distinct
synchronous three-dimensional modes (i.e. with real Floquet multipliers) have been
observed experimentally and computed as direct instabilities from the two-dimensional
flow (e.g. Williamson 1988; Meiburg & Lasheras 1988; Lasheras & Meiburg 1990;
Williamson 1996; Barkley & Henderson 1996; Robichaux, Balachandar & Vanka
1999; Barkley, Tuckerman & Golubitsky 2000; Julien, Lasheras & Chomaz 2003). In
the various cases, the two modes are often differentiated by their spanwise wavelength,
whether one or the other is the first to bifurcate from the two-dimensional state as
a parameter (typically, the Reynolds number) is varied, and to some degree on
the perceived physical mechanism responsible for the instability. These distinctions
have not been unambiguous across the various example flows, and the fundamental
difference between the two synchronous modes is that one retains the spatio-temporal
Z2 symmetry and the other breaks it. There is of course a third possibility, that the
three-dimensional mode results from a complex-conjugate pair of multipliers crossing
the unit circle, resulting generally in a quasi-periodic three-dimensional state.
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Most wake flow studies are formulated such that there is a single parameter
governing the dynamics. As a consequence, for any particular problem, there is only
one three-dimensional mode which is first to bifurcate from the two-dimensional state
as the parameter is varied. Recently, a different flow with exactly the same symmetry
(spatio-temporal Z2 × O(2)) has been studied, both experimentally and numerically
(Vogel, Hirsa & Lopez 2003; Blackburn & Lopez 2003b). This flow in a rectangular
cavity is driven by the periodic oscillation of one wall while the other cavity walls
remain stationary. A vortex ‘roller’ forms at opposite sides of the cavity with each
stroke of the oscillating wall. In this problem there are two (dynamic) parameters, the
amplitude and frequency of the wall oscillation, as well as geometric parameters. The
ability to vary more than one parameter allows the system to have different primary
instability modes of the two-dimensional state in different parameter regimes. In
particular, the two synchronous modes and the quasi-periodic mode have each been
predicted from Floquet analysis (Blackburn & Lopez 2003b) to result from primary
bifurcations of the two-dimensional state in different regions of parameter space.
Further, Marques, Lopez & Blackburn (2004) considered general systems with spatio-
temporal symmetry Z2 × O(2), and concluded that the two synchronous modes and
the quasi-periodic mode are the only generic codimension-one bifurcations from two-
dimensional to three-dimensional flow. These observations motivate us to revisit the
wake problem and in particular re-examine the role of complex-conjugate Floquet
multipliers. Barkley & Henderson (1996), in their Floquet analysis of the circular
cylinder wake, identified a mode with complex-conjugate Floquet multipliers, but for
the range of Reynolds numbers considered, these had moduli less than one, and so
they did not examine it in detail.

2. Symmetries and the half-period-flip map
Formally, the spatio-temporal symmetry, H , of the two-dimensional flow illustrated

in figure 1 operates on the velocity U(x, t) = (U , V , W )(x, y, z, t) as

HU(x, t) = KyU(x, t + T/2) = (U, −V, W )(x, −y, z, t + T/2), (2.1)

and the base flow is H -symmetric: HU(x, t) = U(x, t). Ky is a spatial reflection:
y → −y, V → −V , and T is the fundamental period of the flow. This period is imposed
in non-autonomous cases, such as the periodically driven cavity (Blackburn & Lopez
2003b; Vogel et al. 2003), where the forcing provides two parameters. In autonomous
cases, such as bluff-body wakes, the period is dynamically determined; it is a function
of Reynolds number, Re = U∞D/ν, where U∞ is the free-stream speed and D is the
cylinder diameter. The action of H on the vorticity, Ω = (Ωx , Ωy , Ωz), is

HΩ(x, t) = KyΩ(x, t + T/2) = (−Ωx, Ωy, −Ωz)(x, −y, z, t + T/2). (2.2)

Although the base flows are both two-dimensional and two-component, and hence
∂z = 0 and W = 0, W is included in (2.1) because we will be studying symmetry
properties of three-dimensional instabilities.

A standard tool for the analysis of T -periodic flows is the Poincaré map. The
stability of perturbations to a limit cycle may be examined by determining their
behaviour at successive periods nT , n ∈ �, thus exchanging the stability analysis of a
limit cycle in a continuous dynamical system (ODE or PDE) for the simpler problem
of the stability analysis of a fixed point of a map. Let φ(t; x0, t0) be the solution of
the continuous system, evolving from a set of initial conditions (x0, t0). The Poincaré
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Figure 2. The T -periodic Poincaré return map P and the half-period-flip map H. Et0 is the
Poincaré section of the flow for an arbitrary starting time t0; Et0+T/2 is another section, displaced
in time by the half-period T/2. K is a spatial symmetry. The basic state (on dashed-line limit
cycle) is x0, a fixed point of P and H; x1 is an arbitrary initial point, close to x0; x1, P(x1)
and H(x1) are all different, although P(x1) = H2(x1).

map of x0 is

x0 �→ P(x0) = φ(t0 + T ; x0, t0). (2.3)

If a periodic solution (a fixed point of the Poincaré map) exists, we can linearize
around it to obtain a linear operator LP (the linearized Poincaré map) and compute
its eigenvalues, µP, and eigenfunctions. The eigenvalues are the Floquet multipliers
of linear perturbations to the periodic solution, while the eigenfunctions are the
corresponding time-periodic eigenfunctions evaluated at starting phase t0.

A periodic solution loses stability when at least one Floquet multiplier crosses the
unit circle; in the absence of symmetries, this may happen in three different ways:
(i) µP → +1, saddle-node bifurcation (synchronous); (ii) µP → e±iθ , Neimark–Sacker
bifurcation (quasi-periodic); (iii) µP → −1, period-doubling bifurcation.

Symmetries dramatically change this picture; given a symmetry group G, the
possible bifurcation scenarios are found by analysing the joint representations of LP
and G. The analysis of the influence of purely spatial symmetries in bifurcations and
in the corresponding normal forms is well established. For example, let us consider
how the bifurcation of a single eigenvalue µP =+1 is affected by symmetries. In the
presence of a spatial Z2 symmetry, the saddle-node bifurcation becomes a pitchfork.
And if the symmetry group is O(2), we obtain a pitchfork of revolution (Golubitsky
et al. 1988; Iooss & Adelmeyer 1998; Chossat & Lauterbach 2000).

The corresponding analysis for spatio-temporal symmetries is more recent. For a
Z2 spatio-temporal symmetry, as in the problems we are analysing, instead of the
Poincaré map, we can alternatively use the half-period-flip map

x0 �→ H(x0) = Kφ(t0 + T/2; x0, t0), (2.4)

which is simply the action of the space–time symmetry (2.1) on an arbitrary solution
and K is a spatial reflection. This technique goes back to Swift & Wiesenfeld (1984).
For this and more complicated spatio-temporal symmetries, the theory is non-trivial,
and has been recently, and extensively, developed (e.g. Rucklidge & Silber 1998;
Lamb & Melbourne 1999; Lamb, Melbourne & Wulff 2003, and references therein).

The Poincaré map and the half-period-flip map are illustrated diagrammatically
in figure 2. A fundamental point, exploited in the present work (and in the
aforementioned works on spatio-temporal symmetries), is that since K2 = I , it follows
that P = H2. The Floquet multipliers µP for P are the squares of those for H, i.e.
µP =µ2

H. The stability analysis and the normal forms can be computed for H, and
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the corresponding results for P can easily be obtained using P = H2. This process has
two important advantages: first, the space–time symmetry H is the half-period-flip
map, so it is naturally included in the analysis; secondly, for the numerical stability
analysis, the time integration for H is only computed over half the forcing period,
and the overall computational cost is usually reduced, sometimes halved.

Lamb & Melbourne (1999) and Wulff, Lamb & Melbourne (2001) have identified
many of the bifurcations that a dynamical system with spatio-temporal symmetries
can undergo. Marques et al. (2004) have computed the corresponding normal forms for
centre manifolds of dimension 2 and 4, including all the codimension-one bifurcations,
that a dynamical system with spatial symmetry O(2) and spatio-temporal symmetry
Z2 can undergo. Regardless of the physical instability mechanisms involved, for
the transition from two-dimensional to three-dimensional flow, only three different
codimension-one bifurcations are possible. Two of them are synchronous (F+

2 and
F−

2 ), corresponding to real eigenvalues +1 and −1 of H and two-dimensional centre
manifolds. The third is a quasi-periodic bifurcation (Fc

4) with complex-conjugate
eigenvalues and a four-dimensional centre manifold.

Codimension-one bifurcations are particularly important because they are the
bifurcations generically obtained when a single parameter is varied. In order to
obtain codimension-two bifurcations, at least two independent parameters must
be simultaneously tuned. Although codimension-two (or higher) bifurcations are
more difficult to obtain, they display much richer dynamics, and often act as
organizing centres for the dynamics in large regions of parameter space (e.g. see
Mullin 1993; Marques, Lopez & Shen 2002; Marques, Gelfgat & Lopez 2003;
Lopez & Marques 2003). The primary bifurcations are generically governed by
codimension-one bifurcations, but the dynamics following the primary bifurcation
(e.g. secondary and global bifurcations) are often organized by nearby codimension-
two or higher bifurcations. In the present paper, we focus on the occurrence of
the three codimension-one bifurcations F+

2 , F−
2 and Fc

4 in different wake flows.
The details of the joint representations of the spatio-temporal Z2 and spatial O(2)
symmetries, the centre manifold reductions and the associated normal forms are given
in Marques et al. (2004).

The stability of the periodic two-dimensional base flow is analysed by linearizing
the half-period-flip map H. As the base flow is two-dimensional, we can Fourier
expand the perturbed velocity field u′ in the z-direction and analyse the stability of
each Fourier mode independently for different spanwise wavelengths λ. The form of
one of these Fourier modes is u′ = u(x, y, t)eiβz, where β = 2π/λ. When the flow is
unstable to three-dimensional perturbations (β �=0), the real and imaginary parts of
u′ are linearly independent, and their linear combinations form a two-dimensional
linear space. Therefore, the dimension of the centre manifold is even. In the two
synchronous bifurcation cases, the centre manifold is two-dimensional, and in the
quasi-periodic case it is four-dimensional.

3. Bluff-body wakes
3.1. Circular-cylinder wakes

The long and short wavelength instabilities of the two-dimensional wakes of the
circular cylinder (Williamson 1988, 1996; Barkley & Henderson 1996) are synchronous
with µP real and positive. Respectively, these long- and short-wavelength modes are
known as modes A and B. Figure 3 shows visualizations of modes A and B for the
cylinder wake, obtained through direct numerical simulation with restricted spanwise
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Figure 3. Vorticity isosurfaces for the synchronous wake modes of the circular cylinder, shown
for a 10D spanwise domain extent, and viewed from the cross-flow direction. Translucent
isosurfaces are for the spanwise vorticity component, solid surfaces are for the streamwise
component. (a) Mode A, Re= 195. (b) Mode B, Re =265.

periodic length, at Reynolds numbers slightly above onset for the two modes. The
non-translucent isosurfaces in the figure are of the (streamwise) x component of
vorticity. For an H -symmetric flow, from (2.2), the x-vorticity changes sign with
t → t + T/2 and y → −y at any fixed (x, z). The figure, with views in the (cross-flow)
y-direction, shows this to be the case for mode A, whereas for mode B, the sign of
x-vorticity does not change with t → t +T/2 and y → −y, i.e. mode A is H -invariant
and mode B is not.

Previous Floquet analyses have been based on the Poincaré map, and for both of
these synchronous modes the multipliers cross the unit circle at µP =+1. Floquet
analysis based on the half-period-flip map (see the Appendix for details) shows
that the H -invariant mode A bifurcates at µH = +1, while mode B has µH = −1
(giving µP = µ2

H =+1). Note that µH = −1 is not a period-doubling bifurcation for
P (although it is a period-doubling bifurcation for the map H, whose period is half
the period of P): it is an H -symmetry breaking bifurcation.

The synchronous bifurcations where modes A and B originate are pitchforks of
revolution, because they break the spanwise translation invariance (SO(2) symmetry),
leading to a continuous family of solutions that are parameterized by their phase
in z. Furthermore, these solutions preserve the spanwise reflection Kz at appropriate
discrete points.

The Floquet multipliers for the two-dimensional wake of a circular cylinder,
computed at Re = 280, show that the two-dimensional basic state is unstable to
both modes A and B, while there is an intermediate-wavenumber mode (or modes)
with complex-conjugate pair Floquet multipliers to which the basic state is stable, i.e.
|µ| < 1 (Barkley & Henderson 1996). We have computed and plotted in figure 4(a)
the absolute values of the Floquet multipliers for the linearized Poincaré map, |µP|,
as functions of wavenumber β at this Re (solid circles) and compared these with
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Figure 4. Moduli of the Floquet multipliers, |µP|, for the three-dimensional instability modes
of the two-dimensional wake of a circular cylinder at (a) Re =280 and (b) Re = 380. The
Re = 280 results are compared with those of Barkley & Henderson (1996) at the same Re
(open squares). Multipliers for mode QP occur in complex-conjugate pairs.
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Figure 5. Loci with increasing Re of the Floquet multipliers of the linearized H-map of the
three codimension-one bifurcations of the two-dimensional T -periodic circular cylinder wake,
plotted over the unit circle in the complex plane.

the results from Barkley & Henderson (1996) (open squares), and the two agree.
The onset of mode A is a primary bifurcation of the periodically shedding two-
dimensional wake, occurring at Re ≈ 188, and mode B is a secondary bifurcation at
Re ≈ 259, so that, in practice, it is not observed as a pure mode. Figure 4(b) shows
|µP| for Re = 380, at which value the quasi-periodic mode, QP, has just become
critical. At Re =380, the growth rate (modulus of the Floquet multiplier) for mode B,
the secondary mode, is about twice that of the primary mode A, reversing the
ranking at Re = 280. The quasi-periodic modes appear at tertiary bifurcations from
the T -periodic two-dimensional basic state at Re ≈ 377.

How the Floquet multipliers for the linearized H map, µH, cross the unit circle
as Re is varied is shown in figure 5. Using the H map, it is clear that mode B
is a symmetry-breaking mode and that the quasi-periodic mode is close to being a
period-doubling bifurcation, with critical complex-conjugate multipliers µH = e±i0.470π,
of multiplicity two since the spanwise O(2) symmetry is broken. A period-doubling
bifurcation would occur through a codimension-two bifurcation corresponding to
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Figure 6. Vorticity isosurfaces for the quasi-periodic wake modes of the circular cylinder,
shown for a 10D spanwise domain extent, and viewed from the cross-flow direction. Translucent
isosurfaces are for spanwise vorticity component, solid surfaces are for streamwise component.
(a) Mode SW, Re =400. (b) Mode TW, Re= 400.

a 1:4 resonant Fc
4 bifurcation, with µH =e±i0.5π corresponding to µP = −1 with

multiplicity four (Marques et al. 2004). The theory for the suppression of period
doubling with a simple Floquet multiplier at µP = −1 (Swift & Wiesenfeld 1984) does
not apply. So, while period doubling is possible, it is not generic in a single parameter
system and it appears that no true subharmonic mode has been reported for these
wake flows.

With only a single parameter to vary, Re, only one of the three possible codimension-
one bifurcations will be observed as a primary bifurcation, in this case mode A. For
other flows, or by varying a second parameter (which could be geometric), either
modes QP or B might become primary in some region of parameter space. In
the periodically driven cavity, with the forcing amplitude and frequency as two
available parameters, there are regimes where each of the three codimension-one
bifurcations are primary (Blackburn & Lopez 2003b). Nevertheless, secondary and
tertiary bifurcations from an unstable state can have a profound influence on the flow
dynamics. For example, in the vortex breakdown problem in a cylindrical container,
the tertiary bifurcated modes from the base state eventually become dominant as
Re is increased; this has been observed experimentally (Stevens, Lopez & Cantwell
1999) and analysed numerically (Lopez, Marques & Sanchez 2001; Blackburn 2002;
Blackburn & Lopez 2002).

At the quasi-periodic bifurcation, two distinct solution branches emerge sim-
ultaneously, one corresponding to (modulated) travelling waves, TW, and the other
to (modulated) standing waves, SW; both are modulated by the time-periodic base
state. Figure 6 shows visualizations of the quasi-periodic modes SW and TW for
the cylinder wake, obtained through direct numerical simulation at Re = 400, slightly
above onset for the quasi-periodic modes (Re = 377). Again, as for figure 3, the non-
translucent isosurfaces in the figure are of the (streamwise) x-component of vorticity.
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Figure 7. Bifurcation diagrams corresponding to the six scenarios in the QP bifurcation.
Solid (dashed) lines represent stable (unstable) states, the horizontal line corresponds to the
T -periodic base state. The horizontal axis is the bifurcation parameter (Re), and the vertical
axis is the amplitude squared of the three-dimensional components of the solution.

The TW have (slightly) oblique alternating streamwise vortices, and those on opposite
sides of the wake are interlaced in the spanwise direction, a distinguishing feature of
this mode. The TW propagating in the +z-direction is shown; the −z-propagating
TW is obtained by applying the reflection Kz to the +z-TW. After one period T , the
flow is identical, but translated in the spanwise direction. After half a period T/2,
we recover the same flow after a reflection Ky and an appropriate translation in the
spanwise direction. The standing wave SW does not have oblique streamwise vortices,
and is Kz invariant.

Let us compare these results with the normal form analysis for the codimension-
one bifurcation with complex eigenvalues, Fc

4, for systems with spatial symmetry
O(2) and spatio-temporal symmetry Z2 (Marques et al. 2004). In the Fc

4 bifurcation,
there is a pair of complex-conjugate Floquet multipliers, µH = e±iθ/2, θ ∈ (0, 2π), of
multiplicity two (i.e. a total of four). Depending on the particulars of the problem,
there are six possible scenarios. The associated bifurcation diagrams are shown in
figure 7. At the bifurcation point, three new solutions appear simultaneously: a pair
of modulated travelling waves, moving in the positive and negative z-direction (and
plotted as the same line TW), and a modulated standing wave SW. The bifurcation
diagrams shown in figure 7 are in terms of the bifurcation parameter Re (horizontal
axis) and the amplitude squared (energy) of the three-dimensional components of the
solutions considered.

The six scenarios differ in the stability properties and subcritical/supercritical
character of the TW and SW solutions. Scenarios 5 and 6 seem identical, but differ
in the number of unstable eigenvalues for TW and SW; the solution with larger
slope has a single unstable eigenvalue, and the other has two. For the cylinder wake,
the bifurcation to the QP modes is subcritical, as shown in figure 8, where the
variations with Re of the time-average of the kinetic energies in the first spanwise
Fourier mode, 〈E1〉, of the TW and SW solutions are plotted. Both TW and SW are
subcritical and unstable, corresponding to either scenarios 5 or 6 in figure 7. Floquet
analysis cannot distinguish between scenarios 5 or 6 and nonlinear information is
required. Even though modes A and B have already bifurcated from the basic state
at the Re values where the quasi-periodic modes also bifurcate, we can still make
nonlinear computations in which modes A and B are not present by restricting the
wavelengths used in the computations. This is possible in this problem because of
the well-separated spectra associated with the various modes (see figure 4). Initiating
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Figure 8. Time-averaged kinetic energies in the first spanwise Fourier mode of the TW and
SW nonlinear solutions of the wake of a circular cylinder, as functions of Reynolds number.
Solid (open) circles correspond to stable (unstable) solutions, relative to each other. Dashed
lines indicate the unstable segments of the two solution branches, taken individually.
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Figure 9. Time series of kinetic energy in the first spanwise Fourier mode for a quasi-periodic
circular cylinder wake. Initially, the flow is in a SW state, in a subspace with spanwise reflection
symmetry. At tU∞/D =200, it is perturbed with a small amount of white noise, after which it
evolves to a stable asymmetric TW state.

nonlinear computations with a symmetric combination of the critical eigenvectors at
Re near the critical value for the quasi-periodic bifurcation (see the Appendix for
details), we can compute in an SW-invariant subspace. Perturbing a nonlinear SW
state, we can determine whether SW is stable relative to TW. We have done this over
the range of Re shown in figure 8, and, in all cases, SW evolves towards TW. An
example of such an evolution is provided in figure 9. The nonlinear information that
TW is stable relative to SW determines that scenario 6 in figure 7 is the appropriate
bifurcation diagram for the quasi-periodic bifurcation of the circular cylinder.

For TW, both advancing in time by the period T and the action of the spatio-
temporal symmetry H are equivalent to z-translations. Although H symmetry is not
preserved, there is still a preserved spatio-temporal symmetry, corresponding to H in a
frame of reference translating in z at the phase speed. Each SW is a linear combination
of two equal amplitude modulated travelling waves, travelling in opposite directions.
They possess a Kz symmetry. Translation invariance in the spanwise direction and
H symmetry are broken, and SW do not retain any spatio-temporal symmetry. The
numerically computed solutions in the wake of the circular cylinder shown in figure 6
exhibit all these various symmetries, and agree with the mathematical model Fc

4.
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Figure 10. Vorticity isosurfaces for the quasi-periodic wake modes of the square cylinder at
Re = 220, shown for a 10D spanwise domain extent, and viewed from the cross-flow direction.
Translucent isosurfaces are for the spanwise vorticity component, solid surfaces are for the
streamwise component. (a) SW. (b) TW.

3.2. Other wake flows

Studies of wakes of symmetric bluff bodies are usually limited in the sense that they
only allow for a single control parameter, Re. As noted in § 3.1, only one of the three
possible codimension-one bifurcations (i.e. corresponding to F+

2 , F−
2 or Fc

4) will be
primary for a given bluff body, although one of the remaining two could instead
be made primary if another parameter, perhaps geometric, is introduced into the
problem. For example, the circular cylinder could be thought of as one of a family
of ellipses, with the ratio of minor to major axes being the second parameter. Wake
flows of symmetrical bodies other than the circular cylinder have been studied, e.g.
the square cylinder wake (Robichaux et al. 1999) and the flat-plate wake (Meiburg &
Lasheras 1988; Lasheras & Meiburg 1990; Julien et al. 2003). In both of these cases,
there are, as in the circular cylinder case, two distinct synchronous three-dimensional
modes, one that preserves H -symmetry and one that breaks it. The symmetric mode 2
of the flat plate has the same symmetry as mode A of the cylinders and mode B of
the periodically driven cavity, whereas the anti-symmetric mode 1 of the flat plate
has the same symmetry as mode B of the cylinders and mode A of the cavity. While
symmetry properties of these two modes with long and short wavelengths coincide for
the square and circular cylinders, for the flat plate the two modes have comparable
wavelengths.

The square cylinder wake also has intermediate-wavelength modes with complex-
conjugate pair multipliers, much like the circular cylinder wake. Originally, Robichaux
et al. (1999) interpreted these intermediate-wavelength modes as subharmonic (period-
doubled), but this was probably related to their use of a power method with a single
vector to perform the numerical Floquet analysis; using only a single vector for a
bifurcation problem with a multi-dimensional centre manifold can lead to erroneous
conclusions. The analysis was revisited in Blackburn & Lopez (2003a), where it was
demonstrated that these wake modes are in fact quasi-periodic.

Figure 10 shows nonlinear TW and SW wake solutions for the square cylinder
wake; as for the circular cylinder case, these were computed by restricting the



406 H. M. Blackburn, F. Marques and J. M. Lopez

2.5

2.0

1.5

1.0

0.5

0

�E1�

205 210 215 220 225
Re

Rec

TW

SW

(× 10–4)

Figure 11. Time-averaged kinetic energies in the first spanwise Fourier mode of the TW and
SW instability modes of the wake of a square cylinder, as functions of Reynolds number. The
energy of the SW is smaller, and in accordance with the theory, the SW flow is unstable to
perturbations.

spanwise extent of the computational domain to the wavelength of the quasi-periodic
modes – otherwise, the synchronous modes, which become unstable at lower Reynolds
number, would have dominated. It is apparent that the symmetries of these modes are
identical to those corresponding to TW and SW of the circular cylinder. In contrast,
however, the quasi-periodic bifurcations for the square cylinder are both supercritical;
this is seen in the time-averaged kinetic energy 〈E1〉, plotted in figure 11, where we find
that TW has higher energy and so is stable relative to SW (we have also determined
relative stability by perturbing the solutions, as was done for the circular cylinder).
So, the bifurcation diagram for the quasi-periodic bifurcations of the square cylinder
is scenario 1 in figure 7.

In any real experiment with the wake flows we have discussed (circular and
square cylinder, and flat plate), the O(2) symmetry is only approximate, owing to
the presence of spanwise endwalls at finite distance, which breaks the translation
invariance SO(2), leaving only invariance to reflections about the mid-span, Z2.
Nevertheless, the experimental observations show a remarkable agreement with the
O(2) symmetric theory when the cylinder diameter to length ratio is large. Sheard,
Thompson & Hourigan (2003, 2004) have considered bluff ring wakes, with O(2)
symmetry corresponding to rotations and reflections in the plane of the ring. In
periodic shedding, this wake lacks the space–time Z2 symmetry of the cylinder wakes.
For large-aspect ratio (ratio of major to minor diameters of the ring), Sheard et al.
(2003, 2004) have found two synchronous modes that have the same characteristics
as modes A and B of cylinder wakes. They also report a third mode, mode C, which
they describe as being subharmonic, with characteristics similar to the subharmonic
mode in Robichaux et al. (1999). However, in the limit of large-aspect ratio, ring
curvature goes to zero, the ring asymptotes to a circular cylinder, the space–time Z2

symmetry of the cylinder wake is recovered, and period-doubling bifurcations become
codimension-two. Since both sets of workers used essentially the same single-vector
power method in their numerical analysis, it would be interesting to re-examine these
recent results for the ring, particularly those at high aspect ratio, with a numerical
technique appropriate to dealing with a multi-dimensional centre manifold. The point
is that since the problem (for any ring aspect ratio) has exact O(2) symmetry, the
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centre manifold for any bifurcation breaking O(2), i.e. leading to three-dimensional
flow, must be of even dimension, and so cannot be spanned by a single vector.
In general, the one-dimensional power method technique is only appropriate if one
knows in advance, or can determine through other information, that the Floquet
multipliers are real.

3.3. Physical mechanisms and mode symmetries

Thus far, we have not addressed the issue of physical mechanisms for the various
modes and bifurcations. Two reasons for this are that (i ) our analysis, which is general,
does not need to account for physical mechanisms, only symmetries, and (ii ) while the
physical characteristics of the various modes (e.g. the long-wavelength synchronous
modes) appear to have some similarities across the various flows considered, the actual
physical mechanisms involved remain a topic of some controversy. (For the circular
cylinder wake and the driven cavity, candidate physical mechanisms for the synchr-
onous modes are discussed at length by Blackburn & Lopez (2003b). For the flat-
plate wake, an extensive discussion is presented by Julien et al. (2003).) However,
there is no correlation between spanwise wavelength of three-dimensional instabilities
and the associated symmetries: in the driven cavity, the long-wavelength instability
occurs through the F−

2 bifurcation, while for the circular- and square-cylinder wakes
it is associated with F+

2 . The symmetries, wavelengths and, in general, physical
mechanisms, are independent of one another. The unifying property for all two-
dimensional symmetric time-periodic flows is their symmetry, which in turn dictates
their normal forms and how they can bifurcate to three-dimensional flows – which
generically (i.e. when only a single parameter is varied) will be via F+

2 , F−
2 or Fc

4

bifurcations.

4. Conclusions
We have presented a unified description of the bifurcations to three-dimensionality

which can occur from a two-dimensional time-periodic base state with space–time
reflection symmetry, and the symmetries of the resulting bifurcated states. The analysis
shows that there are exactly three codimension-one bifurcations from two-dimension-
al to three-dimensional flow (i.e. bifurcations that are generally observable with
variations in a single parameter). Two of these are synchronous, one breaking and
the other preserving the space–time symmetry, while the third is quasi-periodic with
a bifurcated state that may be manifest as either a modulated travelling wave or
a modulated standing wave. These three bifurcations have been observed in the
experimental and computational studies of autonomous bluff-body wakes and the
non-autonomous periodically driven cavity flow. Furthermore, from the analysis of
these different flows, it is apparent that the physical characteristics of the flows (e.g.
spanwise wavelength, roller core deformations, structure of streamwise braids, etc.)
are not correlated with the type of bifurcation responsible for the three-dimensional
flows (synchronous or quasi-periodic) nor with their symmetries (e.g. preserving or
breaking the space–time symmetry). This is to be expected, as the characteristics of
the base flow (two-dimensional time-periodic with space–time reflection) are generic
properties of flows, independent of the flows’ physical characteristics, in the same way
that the simpler Hopf and pitchfork bifurcations are common to a vast array of flows
and come about by different physical flow instabilities.

The use of the half-period-flip map in the bifurcation analysis, and, in particular,
for its novel application in the Floquet stability analysis reported here, allows
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unambiguous prediction of the essential characteristics of the bifurcated states, and
this comes with computational savings over conventional analysis based on the
Poincaré map. Further, any complete description of the bifurcation problem requires
a basis that spans the corresponding centre manifold.

This work was supported by the Australian Partnership for Advanced Computing’s
Merit Allocation Scheme, the Australian Academy of Science’s International Scientific
Collaborations Program, MCYT grant BFM2001-2350 (Spain), and NSF Grant CTS-
9908599 (USA).

Appendix. Floquet analysis with the half-period-flip map
The theory underlying Floquet analysis as applied to the unsteady Navier–Stokes

equations has been previously presented in detail for problems with O(2) spatial
symmetry (e.g. Barkley & Henderson 1996; Robichaux et al. 1999; Blackburn &
Lopez 2003b). Floquet stability analysis studies the evolution of a three-dimensional
perturbation u′ to a T -periodic ‘base flow’ U: u = U + u′. The linearized equivalent of
the incompressible Navier–Stokes equations for an infinitesimal perturbation u′ can
be written as

∂t u′ = (∂U N + L)u′, (A 1)

where ∂U N + L represents the linearization (Jacobian) of N + L (the nonlinear
operator N contains contributions from both advection and pressure terms, while
the linear operator L corresponds to viscous diffusion) about the base flow U; ∂U N
is the T -periodic linear operator obtained from N by replacing nonlinear advection
terms with their linearized equivalent u′ · ∇U + U · ∇u′. The operator ∂U N + L is
equivalent to the flow φ in (2.3) and (2.4), thus

u′
0 �→ P(u′

0) = φ(t0 + T ; u′
0, t0), (A 2)

u′
0 �→ H(u′

0) = Kφ(t0 + T/2; u′
0, t0), (A 3)

where now P and H represent the linearized Poincaré and half-period-flip maps
of the perturbation velocity, respectively. Both U and φ have the same spatio-
temporal symmetries, and φ is said to be equivariant with respect to H -symmetry
(2.1) (Golubitsky & Stewart 2002).

Perturbation solutions u′ can be written as a sum of Floquet modes, ǔ(t − t0) =
ũ(t0) exp(γ (t − t0)), where ũ(t0) are the T -periodic Floquet eigenfunctions of φ and
the constants γ = σ +iω are Floquet exponents. The Floquet multipliers, which define
the growth of Floquet modes over the period T , are related to the Floquet exponents
by µP = eγ T . Floquet multipliers for the half-period-flip map are µH = eγ T /2, so that
µP =µ2

H. The time-periodic basic state becomes linearly unstable when one or more
Floquet multipliers leave the unit circle.

A convenient means of finding µP and ũ is to compute the eigenvalues and
eigenfunctions of P: the eigenvalues are the Floquet multipliers and the eigenfunctions
are ũ(t0). Likewise, µH are the eigenvalues of H, while the eigenfunctions are the
same as those for P. Krylov methods are typically used to compute the discrete
eigensystem of P, as described in detail by Tuckerman & Barkley (2000). The same
methods are simply adapted to compute the eigensystem of H: instead of integrating
perturbations over the complete period T on each iteration (i.e. iterating P(u′)),
they are integrated only over T/2, followed by explicit application of the symmetry
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K , thus iterating H(u′). A side-benefit is that the computational time required for
convergence of the eigensystem is typically reduced.

We now address the spatial structure of the three-dimensional Floquet instabilities
of the Z2 ×O(2) flows in question. As a consequence of the two-dimensional geometry
and boundary conditions, and the linearity of (A 1), we can Fourier expand u′ in the
z-direction and analyse the stability of each Floquet Fourier mode independently
for different spanwise wavelengths λ. Since the base flow is two-dimensional and
two-component, two linearly independent expansion functions for u′ are

(u′, v′, w′)(x, y, z, t) = (û′ cos βz, v̂′ cos βz, ŵ′ sin βz)(x, y, t), (A 4)

(u′, v′, w′)(x, y, z, t) = (û′ sin βz, v̂′ sin βz, ŵ′ cos βz)(x, y, t), (A 5)

where β = 2π/λ is a spanwise wavenumber – these break the spanwise O(2) symmetry
for β �= 0, and are spatially periodic in z.

When the critical eigenvalue is real, the centre manifold is generically two-dimen-
sional, as discussed in §2, and is generated by linear combinations of (A 4) and (A 5).
Physically, different linear combinations correspond to translations in the spanwise
direction. Any of these linear combinations can be used as the desired eigenfunction
in the Floquet analysis.

When the eigenvalues are complex, the centre manifold is generically four-
dimensional, and we have two sets of linear generators of the form (A 4) and (A 5).
Both sets are mixed by time evolution and also by reflection in the spanwise direction.
In this case, we cannot, in general, take either (A 4) or (A 5), or even a specific
linear combination of the two, for u′. To do so corresponds to fixing the phase in
z and hence imposes the symmetry of a (modulated) standing wave, modulated by
the time-periodicity of the basic state. When the multipliers are complex-conjugate, a
general linear combination of (A 4) and (A 5) must be used to allow for (modulated)
travelling-wave solutions. Nevertheless, it can be interesting in nonlinear computations
to fix the phase in z, and therefore produce modulated standing-wave solutions; this
is equivalent to restricting the solutions to a Kz invariant subspace, and allows the
computation of the modulated standing-wave solutions in case they are unstable.
It should be noted that since the symmetric expansions (A 4) and (A 5) preserve
their symmetry under the Navier–Stokes equations, full simulations initialized in a
symmetric state will remain symmetric unless perturbed asymmetrically – it is not
necessary to enforce the restriction.

For all the results discussed here, the underlying spatial discretization employs
spectral elements, and the numerical Floquet analysis is based on an Arnoldi
method (Barkley & Henderson 1996; Tuckerman & Barkley 2000). For further details
see Blackburn & Lopez (2003a) for the circular and square section cylinder wakes,
Blackburn & Lopez (2003b) for the rectangular periodically driven cavity and
Blackburn (2002) for application to the cylindrical lid-driven cavity.
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